My family goes to a lot of movies. None of us are film buffs or anything like that, and I can’t say I’ve ever watched any of those film award shows, but we do end up going to the movies quite a bit. I’m nowhere near as knowledgeable about film technology as I am about ramps, but I do like to read about it.
One of my favorite movies from the last decade or two was that King Kong remake. The big ape himself is done pretty spectacularly by a fellow named Andy Serkis, using motion capture.
The way they do it is pretty nifty: they first put Serkis in this weird, full-body suit, made of latex or something like it. His face is then covered with a clear plastic mask filled with little holes. They mark his face with little dots through all the holes before removing it.
The little dots also cover his body suit. They film him moving around and doing his scenes. Then, in the computer, they use those little dots as…well, anchors, essentially, in order to layer the CGI over Serkis. They then build up the character using the dots and the framework between them, rather than animating the whole shebang themselves.
There are a lot more dots on the face, too; that part is harder to animate, so it needs a lot more detail. It still takes a ton of work. Movies are just crazy expensive for a good reason, and not just because of the huge paychecks the actors get. There is a ton of work and expense put into it.
King Kong isn’t the only motion capture character Serkis does, either: he did Gollum from The Lord of the Rings movies, and the main ape from the new Planet of the Apes movies, too, though I never saw those. (I never liked the original too much, mostly thanks to Charlton Heston. He’s an overacting ham. Now, if Planet of the Apes had had, say, Clint Eastwood…)
The technique has definitely evolved quite a bit since King Kong, but I don’t think I’ll ever be able to just dismiss old technology as boring. In fact, it’s often much more interesting.
Unfortunately, it sometimes isn’t possible to construct a shallow ramp, usually due to terrain. You’ve still got to be able to get up to the top, though, which is where funiculars come into the picture.
Depending on the amount of space available, the carts might have separate tracks, or they may share tracks. When they share track, there’s generally a split rail in the middle of the run that diverts the carts around each other.
The first use was actually pre-medieval, though it was used on occasion in medieval times. Siege ramps are huge earthen ramps built right up a castle or city wall, a cliff face, or other positions of strength. They’re about as absurd as you’d think: the builders are going to come under constant attack by the people above, resulting in a wasteful loss of life. It was really only used when the besiegers grossly outnumbered the besieged, were otherwise unable to break through the enemy defenses, and had little care for loss of life on their side. The Romans used it a few times, as did a few of the smaller empires before them, and a few of the smaller kingdoms they conquered.
The other use was in siege towers. These, at least, were constructed with a bit more safety in mind for the troops on your side: not that sending them over an enemy castle wall is, particularly, a safer idea. Siege towers, depending on the whim of the builder, were generally a bizarre hybrid of ramp, staircase, ladder, and watchtower, all built out of wood and canvas and stuck on wheels to roll right up to the castle walls, where troops could exit the tower directly onto those walls.
The ancient Greeks recognized three simple machines to start with: the lever, the screw, and the pulley. The man who came up with the idea, Archimedes, was a brilliant but crazy guy. Built crazy ancient super weapons to sink entire enemy fleets one day, then jury rigged an ancient precursor to calculus the next. He’s considered one of the greatest mathematicians of all time for a good reason. He’s the kind of dude who could have moved the world, if you gave him a long-enough lever.
A simple machine is a device used to change the direction or power of a force applied to something in the simplest manner possible. There are six devices classically categorized as simple machines: axles and wheels, levers, pulleys, screws, wedges, and inclined planes (obviously the best).